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1 Introduction

In panel data models, researchers often want to include fixed effects (FE) to control

for unobserved heterogeneity. However, many important research questions concern

regressors that only vary in the same dimension as the FE. Think of the impact of

gender and ethnicity on wage inequality in panels with individual FE, and the effect of

geographical characteristics or time-invariant institutions on the economic development

of countries in case of country FE. Similarly, one would like to know the impact of global

economic and environmental developments on countries, while controlling for time FE.

This paper studies the perfect multicollinearity due to FE and such “constant”

regressors (constant, as they are invariant in a dimension of the panel). We focus on

the (ceteris paribus) impact of constant regressors on the dependent variable. It is

well known that this is not identified. Our approach, loosely speaking, is to exploit

the explanatory power of the constant regressors and let the FE capture the remaining

heterogeneity. This shrinks the FE compared to the usual approach, where FE contain

the full heterogeneity, creating a more realistic possibility that the FE are zero. If they

are, the impact of the constant regressors is identified, even though it was unidentifiable

at first sight. Our identifying constraint — that all FE are zero — is testable, so we do

not a priori assume identification. For the case where FE are nonzero, we introduce a

way to better interpret and visualize them to find omitted constant regressors.

More precisely, the paper starts by recognizing that multicollinearity requires nor-

malization of some parameters. The typical approach is to normalize the impact of the

constant regressors to zero, thus leaving them out in estimation. One then gives up on

estimating their impact. An alternative is to normalize some FE and get an estimate.

However, this estimates a pseudo-true value, depending on the normalization, not the

true value one is interested in. The true value is not identified.

Next, we realize the normalized FE contain information on the constant regressors.

Our goal is to extract this, leading to two contributions. The first is our identifying

constraint and its testability: if all normalized FE are zero (always testable), one

estimates the true value of the impact of the constant regressors. This is an alternative

to the leading existing approach by Hausman and Taylor (1981), denoted by HT.1 That

can deliver valuable insights if there are enough instruments, if they are sufficiently

1Hausman and Taylor (1981) treat the effect as random instead of fixed. Of course, they can restrict
constant regressors to be uncorrelated with the random effect, a restriction that features many special
cases, such as random effects (RE), fixed effects vector decomposition (FEVD) of Plümper and Troeger
(2007), and the hybrid or between-within (BW) approach in Allison (2009, p. 23), which extends the
correlated random effects approach in Mundlak (1978). But a key contribution is that HT can also
allow for correlation, that is, endogeneity of constant regressors. They have an IV procedure where
instruments are constructed from within the model by taking averages of variables that also vary over
other panel dimensions, such as averages over time of country-time variables in case of country effects.
If these instruments are exogenous and relevant, the true value of the (ceteris paribus) impact of the
constant regressors is identified.
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strong, and if the zero correlation typically assumed between some constant regressors

and the HT random effect is warranted. These conditions can be hurdles in practice;

Kripfganz and Schwarz (2019). Moreover, testing the zero correlation assumption is

hard or can even be impossible; Ahn and Moon (2014). In contrast, our approach

does not depend on instrument availability and strength, and we can always test our

constraint by using the estimated normalized FE. Section 3.3 describes the trade-off

between our method and HT more completely, and Section 5.5.3 illustrates the practical

relevance of the HT conditions and how our method can also help out an HT analysis.

As indicated earlier, our approach consists of two parts, one using a normalization

to estimate a pseudo-true value, and the next using a constraint to identify the true

value. To avoid confusion between “normalization” and “constraint”, let us fix the

terminology used throughout the paper. Normalizations are irrelevant for the conditi-

onal distribution of the dependent variable (they set parameters in an observationally

equivalent way), so in this sense they are without loss of generality. In contrast, we use

constraint for a restrictive restriction. Hence, the terms are fundamentally different.

To illustrate both terms and what is exactly needed for identification, consider a

simple linear country-time panel model. Ignore the constant term for now. The FE is

αi for country i, there is one constant regressor vi, and ν is the true value of its impact.

One typically leaves out vi in estimation, that is, normalizes ν0 = 0. This exem-

plifies what we call “zero normalization”, and we use the superscript 0 to distinguish

zero-normalized parameters, which are pseudo-true values, from the true value. An

alternative zero normalization is α0
1 = 0. This changes the normalized impact of the

constant regressor into ν0 = ν + α1/v1.
2 Hence, both normalizations pin down their

own value for ν0. Those values generally differ from ν, reflecting that ν is not identified.

Still, both normalizations yield the same sum α0
i + viν

0, equal to αi + viν, so that

ν0 and α0
i fully absorb the choice made for the normalization. We can thus safely take

some zero normalization and estimate all normalized parameters and the sum αi + viν.

Now, under the constraint that all normalized FE α0
i = 0, we show that all αi = 0.

As the sum αi+viν is identified, the constraint then implies the true value ν is identified.

We also show that this idea generalizes to other normalizations, reflecting that the

normalization itself does not identify the true value; it is the constraint.

The second contribution of the paper concerns the case where our constraint does

not hold, so there exist nonzero normalized FE. We want to visualize them in a conve-

nient way to extract information on omitted constant regressors. Let us maintain

the example above, though no longer ignoring the constant term α, and consider

the zero normalization α0 = ν0 = 0. This implies that the normalized FE become

α0
i = α+ αi + viν. Hence, they capture not only the effect of country i, but also the

2The superscript 0 is used for all zero normalizations and its exact meaning appears from the context.
The example assumes that the countries are ordered such that v1 6= 0.
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overall intercept and the relevance of vi, creating overlap. This blurs the signal from

omitted determinants in the estimated α0
i .

To resolve overlap we introduce “untangling normalization”, which makes the nor-

malized FE orthogonal to each other and to constant regressors. Untangling is a nor-

malization, so it is irrelevant and not used for identifying the true value; it is just for

interpretation. Hence, it differs from the orthogonality relations in existing methods,

such as RE, FEVD, BW, and HT, which are constraints assumed to get identification.

Untangling offers several advantages. First, it eases interpretation and is unique.

For example, untangling sets the mean of the country FE to zero, so that the untangled

constant αu captures the overall intercept, and the untangled country FE αui is the

country deviation from the overall intercept. There is no overlap between them, easing

interpretation. This specific example is not new; see Suits (1984). But we use a

richer setting, with country FE, time FE, country-specific trends, and regressors that

are constant across countries or time, and untangling can be generalized further, for

example, to three-dimensional panels. We also show how to estimate such FE.

The second advantage of untangling is that the αui capture what is left after accoun-

ting for vi. This facilitates judging how large the deviation from the null hypothesis

is, and it helps to find omitted variables, as we will show in our application. Adding

newly discovered variables to the model can then shrink the remaining FE.

Our approach is broadly applicable. We illustrate it in a gravity model for exports

from OECD countries to the US; see Head and Mayer (2014) for a gravity review. We

focus on time FE and have three constant regressors, namely US GDP, world GDP, and

the US real effective exchange rate (REER). Our identifying constraint is not rejected,

and the constant regressors explain 98% of the time FE, so we leave them out. We thus

identify the true value of the constant regressor impacts. This is typically considered

beyond reach. The REER is a key determinant, accounting for 20% of the time FE,

calling for extension of gravity theory, as Klaassen and Teulings (2017) do.

Another successful application concerns pension reforms in Beetsma et al. (2020). In

general, our method can help researchers to motivate leaving out FE to get an estimate

for constant regressors and, if the constraint is rejected, find omitted variables.

The paper is organized as follows. In Section 2 we describe the model and discuss

normalization. Section 3 introduces the identifying constraint and shows the differences

with Hausman and Taylor (1981). Section 4 sets out untangling normalization. In

Section 5 we apply our approach and HT to the gravity model. Section 6 concludes.

2 Model specification

Throughout the paper we consider a two-dimensional balanced panel model with di-

mensions i and t, representing country and time, say. There are N countries and T
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time periods. This section discusses the model, the perfect multicollinearity involved,

and the required normalization, leading to the distinction between pseudo-true and

true value of the impact of the constant regressors. This is well known, but we present

it in a general way that we exploit later. Identification of the true value is a separate

issue and will be addressed in Section 3.

2.1 Model with the full set of FE and constant regressors

The dependent variable is

yit = α+ αi + τ ·t+ τi ·t+ θt + v′iν + w′tω + x′itβ + εit. (1)

Overparameterization, such as having α and αi, will be resolved in Section 2.2.

The vector vi contains Kv i-regressors, all variables that only vary over countries.

Likewise, wt contains Kw t-regressors. Hence, vi and wt are the constant regressors.

Their ceteris paribus impacts are the parameters of interest and denoted by ν and ω.3

Variables that vary over both dimensions, the it-regressors, are in xit of length Kx. All

vectors in the paper are column vectors.

To control for potential omitted regressors, we add unobserved effects. They are

grouped in three FE-families. The α-family targets the level variation across countries.

It has a homogeneous type, α, and a heterogeneous type, αi. The τ -family targets

linear trends across countries and consists of τ and τi. The θ-family targets the time

variation, consisting of θt. This adds Kd parameters in total.

The assumptions involving the error term εit are those that the user prefers, as

long as they deliver an estimator of α + αi + . . . + w′tω in (1), that is, the sum of

the deterministic and constant regressors parts, not the parts themselves. Hence, our

method can be combined with various assumptions and estimators. A typical example

is to assume a zero mean of εit conditional on the regressors in all times and no cross-

sectional correlation, while allowing for heteroscedasticity and serial correlation.

It is convenient to write (1) in matrix form, stacking the time series of the countries:

y = Dδ + Zγ +Xβ + ε, (2)

3Defining ν (and ω) as the ceteris paribus impact is in line with the literature. First, in HT ν is also
the impact of vi when keeping omitted i-regressors constant, where the latter are in the HT composite
error term. Second, our definition resembles the approach in a textbook regression model. That is,
consider a cross-section model with one regressor, no constant, and the standard assumptions. There,
one could write yi=ai+c·xi+ei, where ai=d·xi. However, one is typically interested in the ceteris
paribus impact of xi, and to be able to vary xi while keeping other determinants constant, one collects
the terms involving xi by writing yi=b·xi+ei, where b=c+d is the ceteris paribus impact. Similarly,
we collect the terms involving vi, so that ν is its ceteris paribus impact. This is just linking the impact
of interest to one specific parameter, without loss of generality. This parameterization does not address
the identification problem we will focus on, because αi may still vary over i by other, omitted variables,
thereby making ν unidentified.
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where y and ε stack all yit and εit, respectively. All deterministic variables constitute

the matrix D = [ιN ⊗ ιT , IN ⊗ ιT , ιN ⊗ [1, 2, . . . , T ]′, IN ⊗ [1, 2, . . . , T ]′, ιN ⊗ IT ], where

ιn is the vector of ones of length n, and In is the identity matrix of order n. The

associated FE parameters form δ = [α, α1, . . . , αN , τ, τ1, . . . , τN , θ1, . . . , θT ]′. The con-

stant regressors are stacked into the matrix Z, where its it-th row [v′i, w
′
t] consists of

Kz = Kv + Kw columns, and the corresponding parameter vector is γ = [ν ′, ω′]′. All

it-regressors are stacked in X.

We assume that the columns in [D,Z,X] are linearly independent, except for the

dependencies within D and between D and Z set out in the next section (Z itself has

full column rank).

2.2 Multicollinearity and normalization

There is (perfect) multicollinearity in [D,Z] for two reasons. The first is within D. For

example, the vector of ones in D is the sum of the N vectors of country dummies in D.

In general, D has column rank Kd−md, where md is the degree of multicollinearity, the

number of dependent columns. In model (2) md = 4, that is, one due to the α-family,

one due to the τ -family, and two because θt is combined with α and τ ·t.
The second source of multicollinearity is that the vi-columns in Z are linear com-

binations of the vectors of country dummies in D, and similarly for the wt-columns

regarding the time dummies. This adds mz = Kz dependencies.

In total, the column rank of [D,Z] is Kd + Kz −md −mz. Hence, from the sum

Dδ + Zγ we cannot infer δ and γ.

We thus introduce md + mz normalizations. One can choose them freely, under

two requirements, and we call the normalizations together the general normalization,

indicated by g.

The first requirement is that the normalization is linear in the parameters. For later

convenience, we formalize this by

Ng

[
δg

γg

]
= 0, (3)

where the (md+mz)× (Kd+Kz) normalization matrix Ng has independent rows, each

specifying one normalization. The g-superscript in the general-normalized parameter

γg makes explicit that it is a pseudo-true value, which generally differs from the true

value γ of the impact of the constant regressors, the value one is actually interested in.

A zero normalization is a special case that sets specific elements of δ0 and γ0 to

zero. Hence, each row of N0 has a one at the place corresponding to the zero-normalized

parameter, and (3) applies with g substituted by 0. For example, if we normalize the

constant to zero, so α0 = 0, thenN0 contains the row [1, 0, .., 0]. Instead, if we normalize
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the i-th country FE to zero, the row is [0, .., 0, 1, 0, .., 0], where element 1 + i is one.

For the second requirement on the normalization, realize that the normalization

should distribute the sum Dδ + Zγ over the fixed effects and the constant regressors

without changing the total and in a unique way, that is,

Dδ + Zγ = Dδg + Zγg, (4)

for unique δg and γg. To achieve this, we append (3) to (4). Then, for any value of the

sum, the requirement on Ng becomes

rank

[
D Z

Ng

]
= Kd +Kz. (5)

In case of zero normalization, one typically removes columns of [D,Z] to obtain a

regressor matrix of full column rank, but we append (3) to (4) for g = 0 to get full

column rank. That is equivalent. Our approach is more tractable here, as it allows us

to account for many normalizations by changing just Ng, leaving D and Z untouched.4

The normalization ensures that δg, γg, and β can be estimated. Appendix A sets out

two estimation methods. This is where typical fixed-effects modeling stops, motivated

by a focus on β. We go further by analyzing δg and γg in Sections 3 and 4.

3 Identifying the true value of the impact of constant re-

gressors

Our overall approach is split into two parts, one about normalization and the other

about a constraint. The normalization, as explained in Section 2.2, is irrelevant for

the conditional distribution of the dependent variable y and is only used to obtain an

identified model. But the chosen normalization affects γg, making its estimate unusable

for inference. Put differently, we are interested in the true value, γ, but that has not

been identified so far. A simple example is when γg is normalized to zero, which says

nothing about γ, of course.

The constraint, discussed in Section 3.1, is on δg to identify γ. This is not limited to

some specific normalization, as the g-normalization captures many of them. We focus

on the ν-part of γ, that is, the impact of time-constant regressors vi; the approach for

wt is similar.

4Appendix A.2 provides a g-specific column-removal approach for each Ng normalization.
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3.1 A testable constraint to identify the true value

The identification problem is that an observationally-equivalent model results by taking

another value instead of ν. That is, taking νg instead of ν, defining αg + αgi such that

α+ αi + v′iν = αg + αgi + v′iν
g, (6)

and then substituting this into (1) gives the same yit. One can thus estimate the

pseudo-true values αg, αgi , and νg, but one cannot infer estimates of the true values α,

αi, and ν from them. This is a well-known and unsolved problem.

As a potential solution, consider the null hypothesis

H0 : αgi = 0 for all i. (7)

Note that this constraint is not on the unidentified αi, but on the normalized αgi . The

latter can be estimated, so this constraint is testable.

Under the constraint, the right-hand side of (6) shrinks to αg+v′iν
g. The α+αi+v

′
iν

part in (1) now becomes αg + v′iν
g, so we have a regression on essentially just vi, as

in a textbook regression without FE. Hence, νg is not influenced by the normalization,

is unique, and is the ceteris paribus impact of vi on yit. Now, recall from below (1)

that we have denoted the ceteris paribus impact by ν. Because there is only one such

impact, ν = νg, so that ν is identified.

An alternative presentation gives some additional insights. Under constraint (7),

equation (6) becomes

αi = αg − α+ v′i (νg − ν) , (8)

where νg−ν is unique, because there is no exact linear relationship among the constant

regressors. Hence, [α1, . . . , αN ]′ lies in the column space of [v1, . . . , vN ]′. Now, recall

from below (1) that the motivation for including αi is to control for omitted i-variables,

that is, for vectors outside the column space. From (8) we know that such variables

are absent. Hence, there is no reason to add αi, that is, αi = 0 for all i. Substitution

into (8) implies ν = νg, so the impact of the constant regressors is identified.

We thus have a testable constraint to tackle the identification problem. We use

two ways to test this constraint. The first examines the constraint directly, so it is a

diagnostic test. The second verifies whether the estimates of other parameters, β, are

affected by the constraint, so we call that the sensitivity test. Appendix B sets out both

approaches in detail and studies the Wald statistic for both in a Monte Carlo analysis.

That suggests good size and power properties. Still, for T < 20 the diagnostic test

is slightly oversized, but that is repairable and only makes our approach conservative.

Section 5 illustrates how the tests work in practice.
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3.2 Relevance of the normalization for the realism of the constraint

Although the chosen normalization g is irrelevant for the conditional distribution of y,

and for each g hypothesis (7) identifies ν, the specific choice can matter for the realism

of the hypothesis. The reason is as follows, starting from the fact that g consists of

1 +Kv normalizations on αg, αgi , and νg.

If the normalizations only concern αgi , then the null hypothesis constrains its remai-

ning N − 1−Kv elements. This correctly reflects that the null says the N observations

of the sum (6) are driven by a constant and vi, that is, by 1 +Kv determinants.

However, if the normalization is αg = 0 and νg = 0, then all explanatory power of

the constant term and constant regressors for the sum on the left-hand side of (6) is

concentrated into αgi , and the null constrains all N of them to zero. This is less realistic

than the N − 1−Kv constraints resulting under the previous normalization, where the

explanatory power of the constant term and constant regressors was exploited.

Researchers often normalize at least νg = 0. We thus advocate a different approach.

To increase the realism of the constraint, one should exploit the information in the

constant regressors, so that only part of the sum αg + αgi + v′iν
g ends up in αgi . That

is, one should normalize some of the αgi and leave αg and νg free. In general, for a

clean identification analysis, one should normalize parameters that will be constrained

by the null hypothesis and leave the remaining involved parameters free. As long as g

fulfills this requirement, the specific choice of g does not matter.5

3.3 Comparison to the literature

The leading existing approach to identify ν is due to Hausman and Taylor (1981).

HT treat αi as mean-zero random variable and use an IV procedure that depends on

the following moment restrictions. First, they restrict that a subset of the constant

regressors, v1i, are uncorrelated with αi: E {v1iαi} = 0. Second, consider the other

constant regressors, v2i, which are allowed to correlate with αi and are thus endogenous.

HT restrict that the time-averages of a subset of it-regressors, x̄1i, are uncorrelated with

αi, so E {x̄1iαi} = 0, and that the x̄1i are relevant instruments for v2i. Let k1 be the

number of instruments and g2 the number of endogenous constant regressors. Then

HT require k1 ≥ g2. All this identifies ν.

If k1 > g2 (overidentification), HT use the Hausman principle to test their prior

restrictions. That is, they compare the estimated β when the two moment restrictions

are imposed to the estimate without using them, which is the within-groups estimate.6

5Of course, in case of hypothesis testing, we exclude normalizations that make the null hypothesis
impossible, for example, normalizations that fix αgi at a nonzero value for some i. Put differently, if
the free elements in αgi are consistent with the constraint, then the other elements, which result from
the free elements and the normalization, must also fulfill the constraint.

6HT encompasses many well-known special cases, including the random effects (RE), Mundlak
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The difference between our approach and HT is fourfold. First, we treat αi as fixed

instead of random. Second, our constraint to identify ν is different. Third, we can test

the constraint directly, using estimates of αgi , instead of via β. Therefore, we can al-

ways test the constraint (without requiring overidentification), with substantial power

to detect correlation between vi and αi, and our test does not depend on instrument

strength. The final difference concerns a trade-off in estimation, involving the restricti-

veness of the constraint and instrument weakness. We discuss these differences below.

The overall conclusion is that our approach has pros and cons. It can be a useful and

simple method on its own. It can also complement HT, as Section 5.5.3 illustrates.

First, HT is a hybrid of fixed and random-effects approaches, as the HT subsets x̄2i

and v2i are allowed to correlate with αi, whereas x̄1i and v1i are not. In contrast, we

treat αi as fixed, so that we work in a fully FE setting, allowing all regressors x̄i and vi

to correlate freely with αi. This can be valuable in practice, because motivating what

regressors in x̄i and vi are exogenous can be onerous (Breusch et al. (2011)). Another

attractive feature of the FE approach is that it delivers estimates and standard errors

of the normalized FE, which helps to see what the model misses.

Second, consider how the true value ν is identified. HT use the above moment

restrictions for that. Instead, we use a constraint on αgi , constraint (7). We can do

this because we split the analysis. The first phase handles multicollinearity by some

normalization, which is irrelevant for the conditional distribution of the dependent

variable. That generates pseudo-true values one can estimate, including αgi . In the

second phase we study the constraint on αgi to identify ν.

The third difference between our approach and HT concerns testing. HT impose

the identifying restrictions during estimation. In case of exact identification (k1 = g2),

those restrictions are fulfilled by construction, so there is no test on their validity. Note

that this also applies to all special cases of HT in footnote 6, except for the RE method.

If there are additional exogenous regressors (k1 > g2), HT can test. How to interpret

the outcome? The HT test focuses on β, which explains its success at finding correlation

(1978), hybrid or between-within (BW), and fixed effects vector decomposition (FEVD) approaches.
All special cases restrict all constant regressors to be uncorrelated with αi, that is, E {viαi} = 0. In
HT notation, g2 = 0. They differ regarding their restrictions on the correlation between it-regressors
and αi, that is, E {x̄iαi}, as follows.

The RE approach is the special case that restricts E {x̄iαi} = 0. Hence k1 = Kx, the number of
it-regressors. k1 > 0 enables the familiar Hausman test for random versus fixed effects.

Mundlak (1978) weakens the RE restriction by auxiliary model αi = x̄c′i ·π plus noise that has mean
zero and is uncorrelated with x̄i, where the c superscript denotes centering and π is the Mundlak
parameter. He thus restricts E {x̄iαi} = E {x̄ix̄c′i }·π. This is a correlated random effects approach. As
HT set out, it is the special case where k1 = 0, so there is no test of the moment restrictions. Although
Mundlak (1978) has no constant regressors vi, one can add them, as in the BW model of Allison (2009,
p. 23).

Finally, FEVD introduced by Plümper and Troeger (2007) leaves E {x̄iαi} unrestricted. Hence
k1 = 0, so there is no test of the moment restrictions. The generality also underlies the estimators by
Plümper and Troeger (2011), Honoré and Kesina (2017), and Pesaran and Zhou (2018).
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between x̄i and αi. The test is not based on ν, because the within estimator does not

estimate that. Hence, as Ahn and Moon (2014) write, the test is not designed to

directly detect correlation between vi and αi, causing limited power for that.

For example, consider the random effects model with E {x̄iαi} = 0 but E {viαi} 6= 0,

so that the RE assumptions are violated by the latter. The question is whether the

HT test reveals this. Wooldridge (2010, p. 331) shows in his formula (10.87) that the

test actually tests whether αi is uncorrelated with x̄i, after taking out the correlation

of x̄i with vi. If x̄i and vi are uncorrelated, (10.87) holds, so the HT test has no power.

For cases where they are correlated, Ahn and Moon (2014) show limited power as well.

We corroborate these results, as applying the HT test to the data from the Monte

Carlo exercise of Appendix B.4.3 yields powers that are all below 28%. Hence, one

should be careful with interpreting non-rejection of the HT test as convincing support

for E {viαi} = 0.

In contrast, our split analysis delivers estimates of αgi , which always yield a test of

our identifying constraint. Moreover, we have substantial power to detect E {viαi} 6= 0,

as our Monte Carlo study reveals.

The fourth difference concerns the estimator. To start with, suppose that both HT

and our test do not reject. First, assume the HT test result is for a model where (the

full vector) x̄i is exogenous. Given the power issues just described, it is wise to allow

part of vi to be endogenous, but then the strengths of the instruments in x̄i matter.

In contrast, given the power of our test, our non-rejection suggests taking a simpler

model, without the FE and without potential weak-instrument issues. Second, assume

x̄i is left endogenous. Then vi must be treated as exogenous in HT. Here our approach

is simpler and, if our null hypothesis indeed holds, yields a more efficient estimator.7

Suppose now the HT test and our test both reject. Both approaches fail to identify

ν. But our FE framework delivers estimated αgi with confidence band, which help to

find omitted regressors. This has paid off, as in Section 5.5.2 the estimated FE reveal

the relevance of the real effective exchange rate for explaining exports, giving the idea

to extend the theoretical gravity model of exports.

Finally, suppose the HT test does not reject, but ours does. This can be due to

the power differences described above, or because of weak instruments. However, the

cause can also be that our constraint is stricter than the HT moment restrictions. This

is the price we pay for the above advantages regarding testing and estimation. If the

reason for the test difference is that our constraint is invalid and the two HT moment

restrictions hold and instruments are strong enough, we fail to identify ν, while HT

succeed. Still, our estimated αgi help to find omitted regressors.

7The efficiency gain can be small and is not the focus of the paper. Still, to understand it, realize
that here HT uses the within transformation, whereas by leaving out αi we avoid that. This makes our
β̂ more efficient and, if vi is correlated with xit, this also makes our ν̂ more efficient.
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4 Untangling normalization

4.1 Learning from the estimated normalized fixed effects

So far, we have tested constraint (7) that all normalized FE αgi are zero. Whether it

holds is an empirical question. If it does, the FE have revealed that the true value ν is

identified. The FE can be left out, and there is no need for normalizing them anymore.

However, if the constraint does not hold, we want to learn from the estimated αgi .

How much we can learn depends on the precision of the estimated αgi . That increases

with the number of observations over time, T . Still, a moderate T can already provide

valuable insights. For example, 17 observations per FE deliver clear information on

omitted variables in Section 5.5.8

Learning from the FE also depends on the normalization. This section introduces a

particularly convenient one, untangling normalization. It is denoted by u, so the special

case g = u. Importantly, untangling is not used for identifying the true value ν. After

all, the identification analysis was for the general normalization g, so that identification

is not driven by a particular normalization — it is due to (7) holding. Moreover, we

introduce untangling after testing (7), knowing that identification is rejected.

Untangling pins down αui . The key is that it does so in a way that is attractive

for interpretation and finding omitted regressors. Hence, the FE framework delivers

estimates and covariance matrix of the normalized FE, and untangling enables us to

make good use of that benefit.

4.2 The idea and advantages of untangling

The idea of untangling normalization is to handle multicollinearity by making the

(normalized) FE orthogonal to each other and to constant regressors, if any. We can

now interpret the FE as deviations from both the other FE and the constant regressors.

They have been untangled, and each FE-type targets a specific feature of the data.

The main aspects of untangling are as follows. First, consider αu and αui as an

example, so that we need one normalization. Untangling normalization sets the mean

of the αui to zero. Now the untangled constant αu captures the overall level, and the

untangled country FE αui is the country deviation from the overall level. Hence, both

8The literature on (small-sample) bias gives more support. For notational convenience, set νg = 0.
If the regressors are strictly exogenous regarding the error, LSDV is an unbiased estimator of the αgi ,
irrespective of T . If, in addition, the error is normally distributed, the estimated αgi are also normal.

For alternative error assumptions, consider Fernández-Val and Weidner (2018), who allow for pre-
determined regressors and study linear and the most commonly used nonlinear models. They review
the literature on large-N and large-T approximations and conclude that the order of the bias in the
asymptotic approximation corresponds with the inverse of the number of observations per parameter.
For the estimator of αgi this means 1/T . Buddelmeyer et al. (2008) use simulations to study the bias,
and for their settings the biases are fairly small for T = 20. Both papers also show how bias correction
can further improve small-sample properties.
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effects do not interfere with each other and are assigned to separate parameters, in a

unique way. Section 4.3 discusses the details for all FE.

Of course, the normalization of αui is well known. It goes back to Suits (1984).

The other normalizations in this section generalize his idea. In addition, we contribute

by presenting an encompassing framework for estimation and testing in Appendices A

and B, and our approach can be extended to, for example, three-dimensional panels.

For the second aspect of untangling, note that each country-specific regressor in vi

requires one additional normalization. Untangling sets the country FE orthogonal to

the variables in vi. Now the αui capture what is left over after the explanation by vi,

thereby exploiting the information in constant regressors. The details are in Section 4.4.

Untangling offers several advantages. It eases interpretation and is unique. In

contrast, in typically-used normalizations, such as zero normalization, the overall level

and the country deviations are “tangled” into the FE, and the normalization depends on

ad-hoc choices. Moreover, by focusing on one specific feature of the data and exploiting

constant regressors, estimates of αui contribute to finding potentially important omitted

regressors. In other normalizations, such as those where ν0 = 0, the information in

constant regressors is ignored. Finally, in untangling, the orthogonalization minimizes

the sum of all squared differences between the observed totals αu + αui + v′iν
u and a

linear combination of the variables in vi, as in linear regression, which stabilizes the

solution νu. Zero normalizations where ν0 is free can lead to erratic ν0 due to noise in

the observations i involved. Section 5.5 illustrates some advantages.

4.3 Untangling fixed effects

We first introduce the untangling normalizations concerning the FE themselves. Note

that α is the homogeneous type of the intercept fixed effects, so we want αu to capture

the overall intercept, so that we do not normalize it. Likewise, τu should capture the

overall trend in the model, so we do not normalize that either.

Country-specific effects

To untangle the country FE from the common constant, we normalize the mean of αui
to zero, so that they capture the country deviations from αu. In formula,∑

i

αui = 0. (9)

Country-specific trends

Similar to αui , we normalize the mean of the country-trend FE τui to zero, so that the

untangled τui ·t capture the country deviations from the common trend τu ·t:∑
i

τui = 0. (10)
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Time-specific effects

Similar to αui , we normalize the mean of θut to zero, so that they are the time deviations

from the overall intercept αu. In addition, time FE pick up the common trend. Because

we already have τu ·t in the model, we orthogonalize the time FE to it. This ensures

that θut is trendless and is the time deviation from the common trend. In formula,∑
t

θut = 0 (11)∑
t

θut · t = 0. (12)

4.4 Untangling to exploit constant regressors

Country-specific regressors

To clean country FE from the information in the vi, we make the αui orthogonal to the

k-th regressor vki for all k. This gives the following Kv normalizations∑
i

αui v
k
i = 0. (13)

This looks like E {viαi} = 0, a key relation in existing methods such as RE, FEVD,

and partly in HT, which treat αi as random. But the difference between (13) and

E {viαi} = 0 is fundamental. We use (13) just as a normalization, so not for identifying

the true value ν — for the latter we take constraint (7) and that does not rely on

untangling as it can use any normalization g. In contrast, in the existing literature

E {viαi} = 0 is a moment condition, used to identify the true value ν. The advantages

of our approach regarding the testability of identification are in Section 3.3.9

Time-specific regressors

Similarly, we clean the time FE from the wt, resulting in Kw normalizations∑
t

θut w
k
t = 0. (14)

9There are additional differences with FEVD. Our approach can more easily handle a broad set
of FE and constant regressor configurations, and it yields estimates of all FE with standard errors to
facilitate the search for new regressors. But even in a panel with αi effects only and for the choice
g = u, our approach improves on FEVD, as follows. In this special case, our point estimates for vi
and xit so far are the same as those of FEVD. However, we recognize that the estimate for vi concerns
the pseudo-true value νu. We then test αui = 0 for all i and, if rejected, we admit that we have no
estimate of the true value ν. If our test does not reject, we remove the FE and realize an efficiency
gain, as explained in footnote 7, realizing that FEVD equals HT for endogenous x̄i and exogenous vi.
Moreover, we have a motivation for the claim that we have identified ν, while FEVD views the estimate
for vi as one of ν, without a test, so by assumption.
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4.5 Untangling in matrix form

Normalizations (9)-(14) can be expressed in matrix form, giving a special case of Ng

in (3). That yields Nu below. It fulfills rank requirement (5). As there are no norma-

lizations on α, τ , ν, and ω, the corresponding columns in Nu are zero.

Nu =

α α1...αN τ τ1...τN θ1...θT ν ′ ω′ Row implements:



0 1...1 0 0 0 0 0
∑

i α
u
i = 0

0 0 0 1...1 0 0 0
∑

i τ
u
i = 0

0 0 0 0 1...1 0 0
∑

t θ
u
t = 0

0 0 0 0 1...T 0 0
∑

t θ
u
t · t = 0

0 v1...vN 0 0 0 0 0
∑

i α
u
i v

k
i = 0

0 0 0 0 w1...wT 0 0
∑

t θ
u
t w

k
t = 0.

(15)

5 Application: the gravity model of trade

Many models contain parameters that one thinks are unidentifiable due to added FE.

Consider the gravity model of trade.

5.1 The gravity model and the identification problem

The gravity model says that exports from one country to another depend positively on

the exporting and importing countries’ GDPs and negatively on distance between the

countries. Distance can be both physical and economic distance, such as trade costs.

Anderson and Van Wincoop (2003) show it is important to include multilateral

resistance terms for the importer and exporter to avoid estimation bias. It has been

difficult, however, to find economic variables that capture these terms.

If gravity models use bilateral data over time, one could nevertheless control for

the multilateral resistances by country-time FE. But then the impacts of country- and

time-specific variables, such as exporter and importer GDP, are not identified. This is

a well-known problem (Head and Mayer (2014)).

Our method can help for both problems. We can test whether FE matter after

exploiting the information in country- and time-specific observables. If FE do not mat-

ter, they can be left out and we estimate the previously unidentified parameters. That

would also suggest economic variables underlying the multilateral resistance terms.

5.2 Model specification

Consider exports from country i to the US in year t. Taking one importer is for sim-

plicity and to stay within the it-setting of previous sections; see Klaassen and Teulings
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(2017) for a three-dimensional application. The model specifies

expiUSt =β1gdpit + β2reerit + ω1gdpUSt + ω2gdpWt + ω3reerUSt

+ α+ αi + τ ·t+ τi ·t+ θt + εit,
(16)

where expiUSt represents real exports from country i to the US, and gdpit, gdpUSt and

gdpWt are real GDP of country i, the US, and the world, respectively, all in constant

dollars. Moreover, reerit and reerUSt are the real effective exchange rates (REER) of

country i and the US, respectively, where exchange rates are defined as home currency

units per unit of foreign currency, so an increase in REER means a depreciation. Using

nominal variables does not affect the main results. All variables are in log. We thus

have two it-regressors, gdpit and reerit, and three t-regressors, gdpUSt, gdpWt, and

reerUSt, so the latter are the constant regressors.10

The GDP variables are suggested by the common gravity model. The theory in

Klaassen and Teulings (2017) proposes adding real exchange rates, both the bilateral

rate reriUSt and the partners’ REERs, here reerit and reerUSt. Because triangular

arbitrage implies reriUSt = reerit−reerUSt, only the REERs are included as regressors.

We add the general set of FE from the gravity literature. Note that it is less

standard to include τi ·t. However, Bun and Klaassen (2007) and Baier et al. (2014)

confirm the importance of adding this to account for trends in exports not explained

by the regressors, as is often done in the time-series literature.

The model includes lags of all regressors as, for example, traders often entered into

contracts in previous periods to export goods in period t, based on export determinants

back then. Two lags turn out to be sufficient, and we add them in the form of first

differences, for example, ∆gdpit and ∆gdpi,t−1. We focus on the long-run effects, that

is, the parameters of the level regressors. The results for the first differences do not

alter our conclusions, and we ignore them in (16) for simplicity of exposition.

The error term εit has mean zero conditional on the regressors in all times. We

thus ignore feedback from bilateral exports to GDPs and REERs, which is in line with

the gravity literature and seems reasonable given that bilateral exports are a limited

fraction of total exports and thus GDP and that exchange rates are mainly driven by

financial variables. The Wooldridge (2010, p. 325) test for strict exogeneity supports

this, as leads of regressors have insignificant impacts. The error term is allowed to be

10The gdpWt regressor resembles a Mundlak (1978) term, that is, an average of gdpit over i. Footnote 6
sets out the differences between Mundlak’s and our approaches, which we can now illustrate. First,
Mundlak uses averages as auxiliary regressors to try to control for the correlation between his random
effect and his it-regressors; there are no constant regressors. Instead, we have constant regressors, which
are not auxiliary and are motivated by economic theory. Second, gdpUSt would be in Mundlak’s time
effect, creating large correlation with gdpit and its average, invalidating his random effects assumption.
In contrast, we treat the time effect as fixed instead of random, thereby recognizing its correlation with
the it- and constant regressors. And we can test instead of assume identification of the true value.
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heteroscedastic and serially correlated.

We estimate the model using LSDV and the indirect approach of Appendix A.1.

This suffices to illustrate our method. Our main results are robust to different specifi-

cations, such as omitting τi ·t, accounting for non-stationarity and cointegration, and a

multiplicative approach estimated by Gamma and Poisson pseudo maximum likelihood

(GPML and PPML), following Silva and Tenreyro (2006), as Appendix C shows.

5.3 Data

The data concern N = 17 countries, namely the EU-15 countries except for Belgium

and Luxembourg, expanded with Canada, Japan, Norway and Switzerland. The sample

is from 1979-2011 (T = 33), resulting in 561 observations.

We use monthly nominal export data from the IMF Direction of trade statistics

(DOTS) and convert them back into home currency using the monthly dollar exchange

rate from the International Financial Statistics (IFS) of the IMF. We then sum to get

yearly values and divide by the home export price index from the European Commission

AMECO database (the base year for all data is 2010; rebasing does not affect our

results). We divide by the home PPP of the dollar from the OECD Economic Outlook

to obtain exports in constant dollars.

Nominal yearly GDP is from AMECO, and we use the AMECO exchange rate to

express it in national currency. We then divide by the AMECO GDP deflator and the

home PPP of the US dollar to get GDP in constant US dollars. West-German data is

used as a proxy for Germany before 1991. Real world GDP in US dollars is from the

OECD Economic Outlook.

Finally, we use consumer-price-based monthly REER data from the Bank for Inter-

national Settlements (BIS), construct yearly averages, and invert.

5.4 Identifying the true value

This section illustrates the first contribution of the paper, our test to identify the true

value of the impact of constant regressors, here gdpUSt, gdpWt, and reerUSt. The null

hypothesis is θgt = 0 for all years t, which is the time equivalent of (7).

As indicated by the g-superscript, we can take any normalization. Following the

advice in Section 3.2, and realizing that the model has a constant and trend and that

the three t-regressors are included with two lags, we normalize 11 out of the 31 time

FE. We also need one normalization on the country FE and one on the country-trend

FE. What specific normalization we take is irrelevant for the identification tests. In

particular, untangling is irrelevant here.

We now estimate the model and test for identification. We take Wald tests, based

on the motivations in Appendix B.1, the supportive size and power results in Monte
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Carlo Appendix B.4, and our panel sizes. The diagnostic test that all normalized time

FE are zero is 22.77 with 20 degrees of freedom, implying a p-value of 0.30.11 The

sensitivity test is 0.67 with p-value 0.72, which shows that leaving out the time FE

does not significantly alter the estimated impacts of gdpit and reerit, so this signals

no evidence of omitted variable bias. Hence, the tests do not reject identification of

the impacts of the three constant regressors. In Section 5.5.2 we will argue that this is

most likely not due to a lack of power, as already suggested by the Monte Carlo results

in Appendix B.4.

Table 1: Estimation results for expiUSt based on model (16)

Without reers With both reers

Specification 1 2 3 4 5 6
Included θt θt θt θt θt,DL DL
Normalization 0 0,u0 u u u –
Figure of FE 1a 1b,1c 1d=2a 2b 2c –

gdpit 0.60 * 0.60 * 0.60 * 0.80 * 1.12 * 1.13 *
(0.23) (0.23) (0.23) (0.24) (0.25) (0.24)

reerit 0.42 * 0.66 * 0.68 *
(0.12) (0.15) (0.14)

gdpUSt 3.43 * 3.03 * 2.35 * 2.30 *
(0.30) (0.29) (0.39) (0.37)

gdpWt −3.59 * −1.84 * −1.18 −1.23
(0.41) (0.45) (0.73) (0.72)

reerUSt −1.02 * −1.02 * −1.01 *
(0.10) (0.13) (0.13)

Wald tests
θgt = 0 770.04 * 545.14 * 222.57 * 85.31 * 22.77 –

[0.00] [0.00] [0.00] [0.00] [0.30]
β = β|θgt =0 2.50 80.69 * 1.34 9.93 * 0.67 –

[0.11] [0.00] [0.25] [0.01] [0.72]
R2
θ 0 0 0.65 0.91 0.98 –

Static models have 561 observations and distributed lag (DL) models 527. DL models have two
lags of each regressor; we display the long-run effects. The normalizations used in specifications 1
and 2 are made explicit in the corresponding FE figures.
The first Wald is the diagnostic test motivated in Appendix B.2 and tests 33, 31, 29, 28, 20 inde-
pendent constraints for specifications 1-5. The second Wald, labeled β = β|θgt =0, is the sensitivity
test of Appendix B.3, showing how sensitive the estimator for β of the level variables is to setting
θgt = 0, which concerns 1, 1, 1, 2, 2 constraints.
R2
θ is the fraction of the variance of the untangled time FE from a model without t-regressors that

is explained once (detrended) t-regressors are included.
Standard errors are between brackets and they are based on Newey and West (1987, 1994), which
gives three lags. p-values are in square brackets. * indicates significance at the 5% level, the level
we use throughout the paper.

We conclude that three t-regressors and their lags have made time FE redundant,

so we can safely leave out the FE. Estimates for the impacts of the t-regressors thus

11The standardized Wald test, discussed in footnote 19, yields a similar p-value of 0.33.
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reflect their true values ω instead of only pseudo-true values. This is remarkable,

because identifying such true values has been a notorious problem in the economics

literature, not only the literature on gravity models. Moreover, the result supports

gravity theory in the sense that a model with reerUSt here no longer needs time FE

to control for omitted t-regressors, and that reerUSt helps to explain US multilateral

resistance, a variable that has been considered unobservable in the gravity literature.

The rightmost column in Table 1 shows the resulting estimates. All signs can be

explained within the theoretical gravity model.

5.5 Untangling

The second contribution of the paper addresses the question what to do if the null

hypothesis θgt = 0 is rejected. We create such a situation within the framework just

used.12 More specifically, we start from the empirical gravity model that is now common

practice (Head and Mayer (2014)), which is (16) without the REERs (β2 = ω3 = 0).

Note that the latter is a constraint, no normalization. There are no lagged regressors.13

We thus deliberately take a step back by reducing the explanatory part of the

model. This allows us to illustrate how an empirical researcher, starting from a well-

known model, can use untangling normalization of Section 4 for better interpretation

and thereby improve the specification. At the same time, we have untangling after the

test outcome of not rejecting identification in Section 5.4, which highlights that the

test in no way depends on untangling normalization, a key point to be realized.

5.5.1 Untangling helps interpretation

The first advantage of untangling is that it facilitates interpretation. This section

illustrates that by varying the normalization, while keeping the rest of the model the

same. Hence, there is one estimation, and then the estimates are simply transformed

to fulfill other normalizations. All normalizations have one on the country FE and one

on the country-trend FE, but we focus on the remaining four choices, two due to the

time FE and two regarding the constant regressors gdpUSt and gdpWt.

One typically chooses a zero normalization. We study two such choices, both having

ω0 = 0. Figure 1a normalizes α0 = τ0 = 0 and shows the estimated normalized time

FE θ0t and confidence band. Their mean is nonzero, reflecting that they are affected

by the overall means of the dependent and explanatory variables. They exhibit some

variation over time, but this seems a minor feature.

12Another possibility is to take other data. Appendix C exemplifies that by adding pre-1979 data.
13Throughout this section we consider the number of countries N = 17 to be sufficiently large to rely

on asymptotic normality when discussing the estimated time FE, stimulated by our own simulation
results underlying Appendix B.4 and the literature reported in footnote 8.
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Figure 1: From zero-normalized to untangled time FE in the common gravity model
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(a) θ0t if α0 = τ0 = 0 and ω0 = 0
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(b) θ0t if θ0T−1 = θ0T = 0 and ω0 = 0
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(c) Untangled θu0t , but still ωu0 = 0
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(d) Untangled θut

All bands around the time FE in the paper are 95% simultaneous confidence bands. They are sup-t
bands, following the suggestion by Montiel Olea and Plagborg-Møller (2019). The sup-t band is the
narrowest band in the class of confidence bands that scale up the pointwise band (which simply
combines the confidence intervals of the underlying parameters) by one parameter to guarantee the
required simultaneous coverage. That parameter is about 1.0 for the bands based on zero normalization
and 1.6 based on untangling.

20



Figure 1b normalizes θ0T−1 = θ0T = 0, giving a positive mean and a shrinking

confidence band. The changes compared to Figure 1a exemplify the well-known effects

of different zero normalizations on the FE estimates, which hamper their interpretation.

It is not yet clear how important the variation over time is, as that may be domi-

nated by the constant or the trend. To have this curvature information visible right

away, it would have been appealing to let the normalization split off the level and trend

information from the time FE. That is what untangling normalization does, by (11)

and (12), in a unique way.

Figure 1c shows the results, where for the moment we do not yet exploit the constant

regressors. Hence, this is a combination of untangling and zero normalization, indicated

by the superscript u0. These FE are more informative and easier to interpret than the

zero-normalized ones. Note the economic downturn in the early 1990s, the dot-com

bubble, and the recent financial crisis. Footnote 15 will give a more complete analysis

of the correspondence between untangled FE and the business cycle.

In addition, untangling has resulted in a more informative confidence band. Un-

tangling can thus better capitalize on an advantage of a fixed instead of random effects

approach, which is that the former delivers insights into the accuracy of all estimated

time effects. Overall, the estimated θu0t indicate the model misses export determinants.

Figure 1d shows the FE from untangling normalization, so we now exploit the con-

stant regressors gdpUSt and gdpWt, using (14). Untangling shrinks and cleans the FE,

so it better shows when exports deviate from what the common gravity model explains.

This section has only varied the normalization. Section 3.2 has shown that nor-

malizations can matter for the restrictiveness of our identifying constraint θgt = 0 for

all t. Hence, as a side issue, we now calculate our Wald tests for the normalizations in

Figures 1a-1d. The bottom parts of columns 1-3 in Table 1 show the results.

The drop in the diagnostic Wald from Figure 1a to 1b (column 1 to 2) reflects

that leaving the overall constant and trend free makes the constraint more realistic,

confirming our advice in Section 3.2 to normalize parameters that also appear in the null

hypothesis, here θgt .
14 How the θgt are normalized does not matter, which is illustrated

by the equal Walds for Figures 1b and 1c.

Moving to Figure 1d and thus exploiting the constant regressors reduces the Walds.

This is again in line with our advice and reflects that the constraint concerns the FE

left over after accounting for constant regressors. In sum, untangling normalization, or

any other approach with the normalizations on θgt only, provides the cleanest indication

of how close one is to identification.

14Our advice also avoids chance dependence of the sensitivity Wald. That is, the small value for
Figure 1a is because the additional constant and trend restrictions make that the estimated β1 and
thus the test depend on the coincidental level and scale of the variables. Our advice avoids this.
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Figure 2: Untangled time FE θut when adding reers to the common gravity model
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(a) Common gravity model 3; dashed −reerUSt
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(b) Gravity model with reers: model 4
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(c) Gravity model with reers and lags: model 5
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5.5.2 Untangling helps to find omitted variables

Figure 2a replicates 1d but adds minus US REER as a dashed line (after detrending,

demeaning, and scaling). The resemblance with the FE is striking. For example,

consider the eighties, where the dollar bubble stimulated and then hampered exports

to the US. Hence, the US REER seems important in explaining time FE, illustrating

the second advantage of untangling, that it can reveal omitted regressors. Of course,

the relevance of exchange rates for exports is well known. But gravity theory typically

abstracts from exchange rates. Klaassen and Teulings (2017) thus extend gravity theory

and confirm that reerit and reerUSt matter. Hence, here untangling not only reveals

t-regressors, but also indirectly an it-regressor.

We thus add reerit and reerUSt to the model, that is, we leave β2 and ω3 free;

see column 4 in Table 1.15 Compared to column 3, we observe a notable change in

the estimated impact of gdpWt. This indicates that adding the REERs substantially

mitigates omitted variable bias.

Figure 2b presents the estimated FE θut . There is again a large reduction of the FE,

and they are now close to zero. Taken together, adding three t-regressors has reduced

the FE substantially, from those in Figure 1c to Figure 2b. We can explain almost all

of the T = 33 time FE by just three variables. This can be quantified by R2
θ = 91%,

which is defined in the note to Table 1.

We next add two lags of all regressors, in first-difference form, as in Section 5.2. The

lags of it-regressors will take some noise out of θut , and lagged t-regressors further explain

θut . We thus again take a distributed lag (DL) model and still allow for unrestricted

serial correlation in the error. The estimates are in Table 1 specification 5.

Figure 2c shows the estimated θut . They are close to zero and R2
θ = 98%. The

confidence band includes zero for all t. This signals that the Wald insignificances in co-

lumn 5 are not due to low power caused by aggregating the information on all FE into a

single statistic.16 In fact, the band in Figure 2b is close to zero and comes with clear re-

jections of both Wald tests, namely 85.31 (p-value 0.00) and 9.93 (0.01). This indicates

that the tests have power, in line with the Monte Carlo results in Appendix B.4.

Finally, column 6 leaves out the FE to increase efficiency. That lowers standard

15An alternative way to show that untangling can help researchers to find omitted regressors
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0.5is by taking this more general model 4 and then leaving out the t-
regressors one by one. Leaving out US GDP gives the estimated
untangled FE in the solid line in the figure on the right, and the das-
hed line is the omitted regressor itself. There is a strong resemblance.
This again shows that untangling can reveal omitted regressors. If we
redo this for world GDP, the resemblance is much weaker (figure not
reported), but for US REER it is strong (the figure is not reported
but is almost equal to Figure 2a).

16The Wald tests have the same values as in Section 5.4, confirming
that untangling is irrelevant for the identification tests.
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errors by about 1% of the point estimates.

5.5.3 Complementing Hausman-Taylor

Our approach can be used on its own, but it can also assist the Hausman and Taylor

(1981) method set out in Section 3.3. The current section illustrates that. We again

start from the common gravity model, so (16) without REERs, for which our approach

gives the results in column 3 of Table 1. For HT we treat θt as random.

HT requires specifying which regressors are exogenous regarding θt. If gdpUSt, say,

is endogenous, business cycle co-movement across countries makes it likely that also

gdpit and thus its cross-sectional average gdpt and gdpWt are endogenous. This gives

two endogenous constant regressors and no instrument. To avoid violating the order

condition, one must view all regressors as exogenous, giving a random effects model.

The HT test, here the Hausman test of random versus fixed effects, has p-value 0.70.

We must be careful with interpreting this as evidence that the GDPs are truly exo-

genous, given the power characteristics discussed in Section 3.3. More specifically,

Wooldridge (2010, p. 331) implies that the test projects out gdpUSt and gdpWt (and

country dummies and trends) from gdpt and then tests whether the remainder is un-

correlated with θt. As US and world GDP capture a lot of the country-average GDP,

this remainder may indeed be uncorrelated with θt. But this holds even if both con-

stant regressors are endogenous. Hence, the high p-value does not tell us whether the

constant regressors are exogenous.

Using our approach, we plot the estimated untangled FE. As shown in Section 5.5.2,

this reveals that reerit and reerUSt have explantory power. Because REERs reflect

competitiveness, which matters for GDP, omitting them in the previous specification

may have caused endogeneity of GDP variables there. This exemplifies how our method

can assist the HT test.

Our method also suggests adding reerit and reerUSt as regressors, which offers

two ways to continue with HT. First, suppose one allows reerUSt to be endogenous.

Because the US is an important trading partner of all countries i, there will be a

negative correlation between reerUSt and reerit, so that reert is also endogenous. This

means an exactly identified HT model, where gdpt is an instrument for reerUSt. One

cannot test this specification. The Stata HT estimates and standard errors for the

constant regressors are: for gdpUSt 2.30 (0.57), for gdpWt 1.39 (4.12), and for reerUSt

-2.25 (1.62). Particularly the latter two estimates differ from ours and the standard

errors are much larger, as our results from column 5 are 2.35 (0.39), -1.18 (0.73) and

-1.02 (0.13), respectively. The reason is that gdpt is a weak instrument for reerUSt.

Alternatively, one can impose that reerUSt and reerit are exogenous. This gives a

random effects model. The HT test does not reject, with p-value 0.93. As before, one

must be careful with interpreting this as support for the specification. The estimation
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results are similar to ours.

We thus end up with two HT specifications. Which one to choose? Our non-

rejection of θgt = 0 supports the second specification. This again illustrates that our

approach can help out HT. In fact, our non-rejection motivates us to simply leave out

all θt, so that there is no need for HT here.

6 Conclusion

We have shown that in fixed-effect models the true value of the ceteris paribus impact of

constant regressors is identified if normalized FE are zero, whatever the normalization.

This constraint is testable. If it holds, our approach resolves a notorious problem in

the literature. It can help researchers to motivate leaving out FE. Moreover, it is an

alternative to Hausman and Taylor (1981), and it can help out an HT analysis.

We have applied our method to a panel gravity model for exports to the US. With

only three t-regressors — US GDP, world GDP and US REER — the year FE become

redundant, so that we have identified the true values of their impacts, even though

that is typically considered beyond reach. This also supports gravity theory in the

sense that a model with US REER here no longer needs time FE to control for omitted

t-regressors, and that US REER helps to explain US multilateral resistance, a variable

that has been considered unobservable in the gravity literature.

Our second contribution concerns the case where the constraint does not hold. For

that, we have introduced untangling normalization. It disentangles FE-types from each

other and from constant regressors, which eases the interpretation of the normalized

FE. This also helps researchers to find omitted variables.

The gravity application has illustrated how untangling can visualize the information

in estimated normalized FE, and how untangling has revealed the relevance of three

t-regressors. The business cycle pattern in exports is well known. But untangling has

also shown the importance of the US REER. We thus recommend giving exchange rates

a more prominent role in gravity theory.

This paper has used parameter homogeneity to simplify the exposition, and that has

turned out to be sufficient. In future work, one may want to allow for heterogeneity, to

further shrink the FE and make our identifying constraint more realistic. Moreover, as

the generalization to ijt-panels is straightforward, untangling can facilitate studies of

financial or trade relations involving many sectors j. Finally, untangling illustrates the

value of information in FE, which may stimulate further research on their estimation.
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Plümper, T. and V. E. Troeger (2007): “Efficient Estimation of Time-Invariant

and Rarely Changing Variables in Finite Sample Panel Analyses with Unit Fixed

Effects,” Political Analysis, 15, 124–139.

——— (2011): “Fixed-Effects Vector Decomposition: Properties, Reliability, and In-

struments,” Political Analysis, 19, 147–164.

Silva, J. M. C. S. and S. Tenreyro (2006): “The Log of Gravity,” The Review of

Economics and Statistics, 88, 641–658.

Suits, D. B. (1984): “Dummy Variables: Mechanics V. Interpretation,” The Review

of Economics and Statistics, 66, 177–180.

Wooldridge, J. M. (2010): Econometric Analysis of Cross Section and Panel Data,

Cambridge MA: The MIT Press.

27



Appendix

A Estimation of normalized parameters

It is important to realize that this appendix (on estimation) and the next one (on

testing) use the general setting of the g-normalization. Hence, both do not impose the

untangling normalization of Section 4. The latter is just a special case that results by

taking (15) for Ng, which happens to simplify the formulas.

Consider mean equation (2). Normalizations only affect the lower-dimensional part

of the regressors, so the focus in this appendix is on Dδ + Zγ. We introduce two

methods of estimation, an indirect and a direct approach.

A.1 Indirect estimation: renormalizing zero-normalized estimates

The indirect estimation method consists of two steps. It first estimates (2) using a zero

normalization and then renormalizes the estimates into the desired g normalization.

A.1.1 Estimating zero-normalized parameters

Using zero normalization in the estimation step is convenient because the parameters

can then be estimated in a standard way, as one just omits the dummies and regressors

corresponding to the normalized parameters from the regressor matrix. After estima-

tion, add zeros to the estimated parameter vector and rows and columns of zeros to

the estimated covariance matrix corresponding to the zero-normalized parameters. We

now have estimates for δ0 and γ0 and the corresponding full covariance matrix.

A.1.2 Renormalizing the estimates

The second step renormalizes δ0 and γ0 into the general-normalized parameters δg

and γg, that is, it redistributes the sum Dδ0 + Zγ0 over Dδg and Zγg. For both

normalizations, system (3)-(4) holds, so we obtain[
D Z

Ng

][
δg

γg

]
=

[
D Z

N0

][
δ0

γ0

]
. (A.1)

To solve for δg and γg, define the matrix on the left by Rg = [D,Z;Ng] and pre-

multiply (A.1) with Rg′. Because of (5), Rg has full column rank, so we obtain[
δg

γg

]
= R0g

[
δ0

γ0

]
, (A.2)

where R0g = (Rg′Rg)−1Rg′R0 is the renormalization matrix that converts the zero into
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the general normalization, and the matrix only consists of observables.17

Hence, to obtain the estimates and estimated variance for the g-normalized para-

meters, we take both for the zero-normalized parameters and apply (A.2). Therefore,

no additional estimation or standard error correction is needed.

A.2 Direct estimation: incorporating normalization into regressors

The second estimation method transforms the regressors in the (Dδ + Zγ)-part of (2)

such that they incorporate the normalization and that the regressor matrix becomes full

column rank. Now we can directly estimate the transformed model and obtain estimates

of the normalized parameters. This direct approach is also useful for estimating models

under constraints, which we will need in Appendix B. Note that leaving out regressors

when applying zero normalization is a special case of this approach.

For a set of general-normalized parameters δg and γg, we first split off some re-

sultant parameters by writing them as a function of the free parameters based on the

normalization. This can be done as follows.

Because Ng has full row rank md+mz, we can take md+mz independent columns of

Ng and collect them in Ng
r , which is thus invertible. Let P be the column permutation

matrix that forms Ng
r and puts the remaining columns in Ng

f , while keeping the initial

column ordering in both Ng
r and Ng

f . We split δg and γg accordingly. That is,

NgP =
[
Ng
f Ng

r

]
and P ′

[
δg

γg

]
=


δgf
γgf
δgr

γgr

 . (A.3)

Hence, the choice of P determines what are the free and what are the resultant para-

meters, but P does not affect the normalization itself.

Using normalization description (3), writing Ng as NgPP ′, and using (A.3) gives[
δgr

γgr

]
= −Ng−1

r Ng
f

[
δgf
γgf

]
. (A.4)

Thus the full parameter vector is a function of the free parameters:[
δg

γg

]
= F g

[
δgf
γgf

]
, (A.5)

17Computing R0g depends on multiplications involving Rg and R0, which have many rows. This can
be simplified. First, select all Kd + Kz independent rows in Rg by Gaussian elimination, making the
resulting R̃g a square matrix of full rank. To maintain the equalities in (A.1), we then select the same

rows in R0 and obtain the square matrix R̃0. Finally, use R̃0g = R̃g−1R̃0 instead of R0g in (A.2). This
yields the same g-normalized parameters.
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where

F g = P

[
IKd+Kz−md−mz

−Ng−1
r Ng

f

]
. (A.6)

We partition F g into four blocks [F g11 F
g
12; F

g
21 F

g
22] such that (A.5) yields

Dδg + Zγg = Dgδgf + Zgγgf , (A.7)

where Dg = DF g11 + ZF g21 and Zg = DF g12 + ZF g22. We have thus incorporated the

g-normalization into the regressor matrix. Hence, we are in a standard setting, where

δgf and γgf can be estimated and (A.5) then gives the estimate of the full vector.18

Results (A.6) and (A.7) simplify if the normalization does not involve γg, that

is, if the rightmost Kz columns in Ng are zero. This holds, for example, for the

normalizations advocated in Sections 3.2 and 4. In this paragraph we thus consider

γg = γgf . Then (A.5) implies [F g21, F
g
22] = [0, IKz ]. Moreover, the rightmost Kz columns

in Ng
f , which refer to γg by construction of P , contain only zeros. Then the same

holds for Ng−1
r Ng

f . Hence, considering the complete F g matrix, (A.6) implies that its

rightmost Kz columns consist of zeros except for a block IKz . The P matrix in (A.6)

permutes the rows such that IKz ends up at the rows corresponding to the elements of

γg, that is, the bottom rows. Hence, above those rows, the rightmost Kz columns in

F g contain only zeros. Hence, F g is block diagonal:

F g =

[
F g11 0

0 IKz

]
. (A.8)

As a result, Dg = DF g11 and Zg = Z. Hence, Z is no longer transformed, reflecting

there is no normalization on γg.

B Testing constraints that identify γ

We are interested in γ, the true value of the impact of the constant regressors. The

presence of the fixed effects δ makes that we can only estimate γg, leaving γ unidentified.

But αgi = 0 for all i implies νg = ν, and θgt = 0 for all t implies ωg = ω, as explained

in Section 3.1, so that we have constraints that identify (parts of) γ = [ν ′, ω′]′. This

appendix sets out the diagnostic and sensitivity tests of such constraints. Both tests

are special cases of the following more general testing procedure.

18To show that [Dg, Zg] has independent columns, start from (5), so that [D,Z;Ng] has full column
rank. Because also F g has full column rank, the same holds for [D,Z;Ng]F g. Substituting (A.6) and
the first equality in (A.3) yields [D,Z;Ng]F g = [[D,Z]F g; 0]. Because all columns on the left are
linearly independent and on the right there is a block of only zeros under [D,Z]F g, the latter matrix
has independent columns. That matrix is [Dg, Zg].
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B.1 Testing under normalizations

As long as parameters are not pinned down in normalizations, such as νg if normaliza-

tions are on αgi , we can use a standard way to test constraints, such as a Wald test. But

parameters that are pinned down due to normalizations are linked to each other and

their estimator can have a singular covariance matrix, invalidating standard testing.

Things change if we incorporate the normalization into the constraint.

Consider the null hypothesis

H0 : C

[
δg

γg

]
= c, (B.1)

where C is the constraint matrix with independent rows, and c is a vector of constraint

values. Testing this involves two problems. First, the estimator of [δg′, γg′]′ has a singu-

lar covariance matrix, due to the normalization. This is resolved by substituting (A.5)

into (B.1), giving CF g
[
δg′f , γ

g′
f

]′
= c, where the vector of free parameters can be esti-

mated in the standard way with a non-singular covariance matrix (see Appendix A.2).

The second problem is that rows in C may be redundant due to the normalization.

For example, if the normalization makes that αgN follows from the other αgi , then

constraining all αgi makes at least one row in C redundant. More formally, CF g may

have dependent rows. We remove those from CF g and denote the result by Cg. Taking

out the corresponding rows from c yields cg. We thus rewrite

H0 : Cg

[
δgf
γgf

]
= cg. (B.2)

To test this hypothesis, the researcher can choose a statistic, depending on the applica-

tion at hand. That choice is beyond the focus of our paper. One example is the Wald

test using the χ2
Q-distribution, where Q is the number of independent constraints.19 It

may also be informative to study the constraints individually, for example, by t-tests.

B.2 Diagnostic test

The g-normalized FE αgi and θgt represent i-variables and t-variables that are relevant

for yit but omitted from the model. Our first test is about existence of such omitted

variables, so the null hypothesis constrains αgi and/or θgt to zero. This means that

19Here we have in mind the null hypothesis that all αgi = 0, in an application with large T . If
N grows, so do the degrees of freedom of χ2

Q. Donald et al. (2003) show that even for N → ∞ the
χ2
Q-distribution applies. Because such an approach is correct for fixed Q as well, they prefer it over a

standardized test, such as the standardized Wald statistic (Wald − Q)/
√

2Q with a standard normal
asymptotic distribution. Lu and Su (2020) test for the presence of FE when N and T pass to infinity
simultaneously. Ghysels et al. (2020) introduce a test for many zero restrictions, but a Wald test is
preferable here because of higher power, as discussed in Appendix B.4.
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part of δg is constrained, and we denote that part by a subscript 0. Hence, the null is

δg0 = 0. This is a special case of (B.1). Hence, defining C accordingly, setting c = 0,

and following the approach of the previous section gives a test, such as the Wald test.

This is our diagnostic test.

The constraint is sufficient for identification of ν and/or ω. It is not necessary,

because αgi and/or θgt may be uncorrelated with the included regressors, ensuring iden-

tification even if they are nonzero. Hence, the diagnostic test may reject even if the

true values are identified.

B.3 Sensitivity test

The second test avoids the stringency of the diagnostic test by accounting for the

fact that, even if omitted variables exist, they need not matter for estimating some

parameters. This is similar to the idea underlying an omitted variables bias test. We

compare the unconstrained estimator β̂ to the estimator β̃ under the constraint δg0 = 0,

which is equivalent to setting its free part δgf0 = 0. If β̂ − β̃ = 0, the estimator of β is

insensitive to the FE, which supports leaving them out.

We can compute β̂− β̃, but we do not know its variance, as β̂ and β̃ are correlated.

However, if we focus on LSDV, β̂ − β̃ can be written as a transformation of δ̂gf0, based

on Magnus and Vasnev (2007): δ̂gf∅
γ̂gf
β̂

−
 δ̃gf∅
γ̃gf
β̃

 = −
([
Dg
∅, Z

g, X
]′ [
Dg
∅, Z

g, X
])−1 [

Dg
∅, Z

g, X
]′
Dg

0 · δ̂
g
f0, (B.3)

where δgf∅ collects the elements of δgf that are not in δgf0, and Dg
∅ and Dg

0 are the

corresponding submatrices of Dg defined below (A.7).20 We know the distribution of

δ̂gf0 and thereby of β̂ − β̃. We can thus test whether its realization differs significantly

from zero, for example by a Wald test. This is our sensitivity test. It essentially takes

(B.2) and uses a specific linear combination of δgf0, illustrating that here not the mere

absence of omitted variables (δgf0 = 0) is crucial, but rather how much a combination

of them matters for estimating parameters of interest.

To interpret (B.3), distinguish two parts on the right. At the end, we have the

diagnostic part, δ̂gf0, which measures the magnitude of the misspecification due to

constraining FE to zero. The remainder indicates how much one unit of misspecification

20To derive (B.3), combine model equation (2) with (4) and (A.7). Then split off δgf0 by partitioning

the regressors into L =
[
Dg
∅ , Z

g, X
]

and Dg
0 , and collecting the parameters for L by λ = [δg′f∅, γ

g′
f , β

′]′.

Now the model becomes y = Lλ+Dg
0δ
g
f0 + ε. Then [λ̂′, δ̂g′f0]′ depends on ([L,Dg

0 ]′[L,Dg
0 ])
−1

. Applying

the partitioned inverse formula to the latter, and substituting the resulting expression for δ̂gf0 into that

for λ̂ yields (B.3).
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matters for the estimate of β (and the other parameters), so it is a derivative. Even a

large and/or significant δ̂gf0 can barely matter for estimating β, if the derivative in that

direction is low. Magnus and Vasnev (2007) emphasize the importance of analyzing the

derivative in addition to the diagnostic. Our sensitivity test accounts for both aspects.

B.4 Monte Carlo study

This appendix presents a concise Monte Carlo analysis of the above diagnostic and

sensitivity tests. Given their popularity, we focus on Wald tests. We only consider FE

αi, so the null hypothesis is that all normalized country fixed effects are zero; as in (7).

The results, however, are one-to-one applicable to a setting with only time FE θt.

For some designs, exact finite-sample results of the Wald tests exist. Still, practi-

tioners typically use the χ2-approximation. That yields oversize for small T , so one

relevant question is how quickly that disappears when T grows in a panel. Moreover,

what happens if we let N and thus the number of fixed effects grow large? How powerful

are the Wald tests for our hypothesis? How do correlations between fixed effects and

observed regressors matter? Together with the empirical application in Section 5, the

Monte Carlo answers to these questions will illustrate the potential of our approach.

B.4.1 Design

The model contains country FE, one constant regressor vi, and one it-regressor xit,

yit = α0 + α0
i + ν0vi + βxit + εit, (B.4)

where we have normalized the FE. The exact normalization is irrelevant in the Monte

Carlo analysis, but a concrete example is α0
N−1 = α0

N = 0, so that the null hypothesis

is α0
1 = . . . = α0

N−2 = 0. We estimate by LSDV and study degrees-of-freedom-corrected

Wald tests, using 5% χ2-critical values.

The data generating process (DGP) allows for correlation between αi, vi, and xit,

in line with our fixed effects framework. More specifically, we generate

yit = αi + εyit (B.5)

where

αi = αvε
v
i + αxε

x
i + εαi (B.6)

vi = νxε
x
i + εvi (B.7)

xit = εxi + εχit. (B.8)

We leave out a constant, vi, and xit in (B.5), because they would not affect our Wald
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tests given the above model. The parameters αv, αx, νx govern the key correlations.

The innovations εyit, ε
v
i , ε

x
i , ε

χ

it, ε
α
i are iid with zero means. Without loss of generality in

our exercise, we fix the variances of εyit, ε
v
i , ε

x
i at unity.21 The variance of εχit is σ2χ > 0,

and that of εαi is σ2α ≥ 0. All innovations are normally distributed, though we also

address the uniform distribution.

Instead of choosing the five DGP parameter values directly, we first move to a more

orthogonal parameter space, as in Kiviet (2012). The five base parameters underlying

that space follow in a straightforward manner. First, σ2χ > 0 is a base parameter by

itself and quantifies the variation of xit within a country over time relative to the pure

cross-sectional variation due to εxi . Second, the variance Var (αi) = α2
v + α2

x + σ2α ≥ 0

is the total variation of the country effect. Finally, consider the correlations between

αi, vi, and εxi , that is, ραv ∈ [−1, 1], ραx ∈ (−1, 1), and ρvx ∈ (−1, 1), where the first

two are only defined if Var (αi) > 0.22 The correlation between αi and vi consists of a

direct and an indirect part via εxi , and we simply define the direct part ρdαv by splitting

off the indirect part, so ρdαv = ραv − ραxρvx (one could also take the partial correlation).

We take ρdαv, ραx, and ρvx as base parameters.

Below, we choose base parameters within the above ranges. We then derive the

DGP parameters and generate N × T observations.23 We replicate this 100,000 times,

redrawing all five innovations at each replication.

B.4.2 Size

Under the null hypothesis that all normalized country fixed effects α0
i in model (B.4)

are zero, the (non-normalized) αi do not depend on i, as shown in Section 3.1. The

reverse is also true. Hence, to calculate the actual sizes of the Wald tests, we generate

data under Var (αi) = 0.

Figure B.1a presents the sizes of the Wald diagnostic test for various N and T . It

is reassuring that the number of fixed effects, N , has virtually no effect on size. This

could have been expected from Donald et al. (2003).19 Size also hardly depends on the

distribution of the innovations, as the solid line for the normal and the dashed line for

the uniform distribution are so close. The test, however, is oversized for small T , say

T < 20. This is in line with the cross-section results in Evans and Savin (1982). They

21The Wald tests are invariant to these fixations. First, multiplying all five innovation variances by
some positive factor does not change the Wald tests, so we can set that of εyit to unity. Moreover,
multiplying εvi by a nonzero factor is absorbed by dividing ν0 by that factor, and similarly for εxi , εχit,
and β, without changing the Wald tests, so that we can fix the variances of εvi and εxi at unity.

22If DGP parameter σ2
α > 0, we further know that Var (αi) > 0, ραv ∈ (−1, 1), and that the correla-

tion matrix of [αi, vi, ε
x
i ]′ becomes positive definite with determinant 1 +ρ2αxρ

2
vx−ρd2αv−ρ2αx−ρ2vx > 0.

23If Var (αi) > 0, we get αv = ρdαv
√

Var (αi) / (1− ρ2vx), αx = ραx
√

Var (αi), νx = ρvx/
√

1− ρ2vx,
and σ2

α = Var (αi)
[
1− ρd2αv/(1− ρ2vx)− ρ2αx

]
, where the term in square brackets is positive because the

determinant in footnote 22 is so. If Var (αi) = 0, the formula for νx remains, and αv = αx = σ2
α = 0.
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Figure B.1: Actual sizes of Wald tests of the absence of fixed effects α0
i
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(b) Sensitivity test

Each gridpoint is based on 100,000 normal or uniform draws from DGP (B.5) using Var (αi) = 0, while
the other base parameters turn out to be irrelevant. We estimate model (B.4) and compute the Wald
tests of Appendices B.2 and B.3. Further details are in Section B.4.1.

suggest using the likelihood ratio test to avoid oversize, and our results for that test

(not reported) corroborate that. Still, we keep our focus on Wald, because it is easier

to use, oversize only makes our identification strategy conservative, and applications

may exhibit a substantial T .

Figure B.1b shows the sizes for the sensitivity test. The distribution of the innova-

tions has virtually no effect, and the test is better sized for small T than the diagnostic

test.

B.4.3 Power

Based on the results of the previous section, we study the powers of both Wald tests

for N = 20 and T = 20 with normally-distributed innovations.24 Figure B.2 displays

the powers as a function of the magnitude of the fixed effects, Var (αi). Powers have

not been size corrected. There are power curves for nine representative combinati-

ons
(
ρdαv, ραx, ρvx

)
, eight containing all combinations of ρs from {0, 0.5}, and one for

(0.5, 0.5,−0.5). The figure note motivates the choices of the base parameters.

Figure B.2a concerns the diagnostic test. For all ρ-combinations power quickly

increases when the FE become stronger. Empirical Section 5 presents more evidence

that the diagnostic test has serious power.

One can understand this power from the intuition in Ghysels et al. (2020). They

24This choice gives a representative view. Still, there are some moderate dependencies of power on
panel sizes. The powers of both Wald tests depend positively on N , because for higher N the null
hypothesis contains more constraints. The powers also depend positively on T , because higher T gives
more observations to estimate each α0

i .
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Figure B.2: Powers of Wald tests of the absence of fixed effects α0
i for N = T = 20
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(b) Sensitivity test

Each gridpoint is based on 100,000 normal draws from DGP (B.5) and base parameters below. We
estimate model (B.4) and compute the Wald tests of Appendices B.2 and B.3. Further details are in
Section B.4.1.
The five base parameters are as follows. First, under the alternative hypothesis, Var (αi) > 0, and we
cover that by a grid from 0 to 1, using that beyond 1 power increases monotonically to unity. This
grid is realistic, as in Section 5 we can compute the variance of the estimated FE to obtain some idea
about realistic values of Var (αi), and in a model without constant regressors we get 1.6, while a model
with them gives 0.03.
Next, each of ρdαv, ραx, and ρvx has a grid {0, 0.5,−0.5}, giving 27 combinations. For nine of them the
power curves are visible, because each of the other 18 curves coincides with an included curve.
Finally, σ2

χ = 1. The diagnostic test power is robust to changes in σ2
χ. However, the power of the

sensitivity test depends on it, not so much for σ2
χ > 0.1, but if σ2

χ goes to zero, power drops a lot. In
the latter case, xit gets nearly time invariant, so in this sense comparable to vi. Fortunately, in this
case we still have the diagnostic test, which has high power. Note that for the two it-regressors in our
empirical application in Section 5 we can estimate σ2

χ-values, which gives 1.7 and 6.9, so our choice
σ2
χ = 1 is sensible.

argue that the power of Wald tests increases if regressors become less correlated. Our

regressors are almost all dummies, which are orthogonal, and for orthogonal regressors

the authors show that Wald works well. They derive this for hypotheses consisting

of many constraints. In fact, in our setting, a larger N and thus more constraints

makes Wald somewhat more powerful. Finally, their judgment is based on a Wald test

that has lost power by adjusting for severe size distortion. We largely avoid such size

distortion by using the degrees-of-freedom-corrected Wald test, as advised by Evans

and Savin (1982), and that further explains the substantial power we find.

The ordering of the power curves yields insights into the power determinants, as

follows. The top two items in the legend concern ρdαv = ραx = 0. The only source of

the FE αi is pure randomness εαi , uncorrelated with observables. This is where the test

has maximum power. Intuitively, the αi that are hidden in yit are neither explained

by vi, nor by xit, so they are fully picked up by large (absolute) estimated α0
i , causing

high power. As this holds for any ρvx, the two top power curves coincide.
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Going down the legend reduces power (slightly). The most important power indica-

tor is the total correlation ραv = ρdαv + ραxρvx in the right column of the legend, which

is monotonically linked to power. Another driver is ραx. Hence, correlations between

the FE and both regressors matter, where stronger correlation lowers power.

Figure B.2b gives the power of the sensitivity test for the same nine ρ-combinations

as before. This test reflects the influence of leaving out the FE on the estimated β,

similar to the idea of an omitted variable bias test. It thus provides an indirect signal

compared to the direct signal in the diagnostic test, so that it is not surprising that the

sensitivity test has lower power. As before, power is increasing in Var (αi), reflecting

that the diagnostic part is relevant in the sensitivity test formula (B.3).

Because of the link to omitted variable bias, let us consider ραx. As usual, a high

value by itself causes an upward bias in the estimated β, giving power to the test. From

Basu (2020) we conclude that the indirect correlation term ραvρvx mitigates the bias.

Hence, as before, we define the direct part of the correlation as ρdαx = ραx − ραvρvx,

and use this as a simple bias indicator. Its values are on the right side in the legend.

The legend is again ordered from high to low power, and the ordering confirms that

the bias indicator is positively related to power, though not perfectly. We see that

the lowest power occurs when there is low omitted variable bias, and that the test has

substantial power when omitted variable bias is high. Both are reassuring.

C Robustness analysis

This appendix confirms that our results are robust to various deviations from the ba-

seline specification. We focus on the identification tests, for which the precise norma-

lization is irrelevant, but we also report the estimates under untangling normalization.

C.1 Leaving out country-specific trends τi ·t

The number of papers that include trend FE τi ·t into a gravity type of model is gro-

wing. They are also relevant here. More specifically, a Wald test of τi = 0 for all i

(leaving τ unrestricted) is 267, much higher than the critical value of 26 based on the

χ2
16-distribution. Moreover, leaving out country trends affects the estimates, as follows

from comparing specification 7 in Table C.1 to the baseline with FE, replicated as 5.

For example, the estimate for gdpit changes, which can be explained by the fact that

gdpit is the only i-dependent regressor with a clear trend, so that it will try to fit the

omitted country trends as well.

Excluding τi ·t, however, does not change our main results. The t-regressors still

explain most of the time effects (R2
θ = 97%), and the two Wald tests confirm that the

θut are jointly insignificant and removing them does not notably affect the β estimates.
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Table C.1: Sensitivity of results for expiUSt model (16)

Specification 5 7 8 9 10 11
Estimation LSDV No τi ·t DOLS GPML PPML Pre-1979

gdpit 1.12 * 2.26 * 0.46 1.12 * 0.25 1.39 *
(0.25) (0.19) (0.33) (0.25) (0.36) (0.20)

reerit 0.66 * 0.83 * 0.50 * 0.67 * 0.36 * 0.28 *
(0.15) (0.21) (0.16) (0.15) (0.10) (0.12)

gdpUSt 2.35 * 1.55 * 2.81 * 2.26 * 3.05 * 2.27 *
(0.39) (0.50) (0.33) (0.39) (0.38) (0.40)

gdpWt −1.18 −1.06 −1.21 −1.19 −2.46 * −1.67 *
(0.73) (1.13) (0.75) (0.72) (0.85) (0.47)

reerUSt −1.02 * −0.97 * −1.07 * −1.01 * −0.43 * −1.26 *
(0.13) (0.17) (0.13) (0.13) (0.18) (0.10)

Wald tests
θut = 0 22.77 20.31 22.91 22.33 55.78 * 82.73 *

[0.30] [0.44] [0.29] [0.33] [0.00] [0.00]
β = β|θut =0 0.67 3.24 0.94 0.55 2.95 0.79

[0.72] [0.20] [0.62] [0.76] [0.23] [0.68]
R2
θ 0.98 0.97 0.98 0.98 0.97 0.95

All models include θt and have two lags for every regressor. Model 7 leaves out the country-
specific trends, that is, τi = 0. Model 8 explicitly accounts for cointegration between
expiUSt and gdpit and it uses DOLS estimation with two leads and lags for gdpit. For
models 9 and 10, the Wald sensitivity tests no longer use the transformation in (B.3), but
the corresponding one for the maximum likelihood (ML) estimator, as derived by Magnus
and Vasnev (2007). This can be applied to GPML and PPML, because the transformation
relies on the first-order condition of ML, which is identical for ML and PML for both the
Gamma and Poisson approaches. Model 11 is the same as 5, but the results are based on
the enlarged 1965-2011 sample (765 observations), leading to 34 instead of 20 degrees of
freedom for the Wald diagnostic test, giving critical value 48.60 instead of 31.41. The note
to Table 1 provides further details.

C.2 Non-stationarity and cointegration

We first test whether expiUSt, gdpit, and reerit have a unit root for all countries, using

the four Fisher type tests in Stata. The test equation accounts for a drift term, lagged

differences, and for expiUSt and gdpit it also has a trend. All parameters are country

specific, and we account for time effects. The results indicate that expiUSt and gdpit

have a unit root, but reerit is stationary.

Next, we apply the Pedroni panel cointegration tests. The test equation contains

country effects and trends, and the cointegrating parameter is country specific. We add

time effects. There is strong evidence for cointegration between expiUSt and gdpit.

Although the LSDV estimates used earlier remain consistent in the presence of

cointegration, the standard errors require adjustment. We thus perform dynamic OLS

(DOLS), as proposed by Mark and Sul (2003). That is, we estimate the cointegrating

regression of expiUSt on gdpit, adding two leads and lags of the first differences of

the regressor (combinations of 0-3 leads and lags yield similar results), allowing their

coefficients to be country specific, and including the full set of fixed effects. This gives

the DOLS estimate of β1 and its standard error. Then we fix β1 at this value and
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estimate the remaining parameters using LSDV.

Model 8 in Table C.1 displays the results. They do not differ much from the

baseline results in model 5. Both Wald statistics do not reject, and the estimated θut

(not shown) are comparable to those in Figure 2c. The time FE are for 98% explained

by the t-regressors, in line with the baseline.

C.3 Multiplicative model, estimated by Gamma and Poisson PML

Instead of our constant conditional mean restriction on εit, motivating LSDV estima-

tion, one may prefer a multiplicative approach by assuming that restriction for exp (εit)

and then use GPML or PPML. Models 9 and 10 display the results.

The GPML results are close to those of LSDV, so the difference in moment restricti-

ons does not matter for our data. For PPML we reject θut = 0. However, the plot of

estimated θut is similar to that of GPML (both not shown) and LSDV in Figure 2c, and

only two are outside the band. We are thus still close to the LSDV conclusion, which

is confirmed by the again high R2
θ = 97%. The Wald sensitivity test does not reject, in

line with LSDV.

C.4 Enlarged sample: 1965-2011

So far, we have considered a sample from 1979-2011. That has been sufficient to

illustrate our contributions. Now, and only in this section, we add pre-1979 data,

thereby including some economically unstable years.

Table C.1 specification 11 displays the results. The main difference with the baseline

sample is that the Wald diagnostic test now rejects that all untangled time FE θut = 0.

However, the plot of estimated θut is similar to that of Figure 2c and only two are

outside the band, reflecting that the time FE are almost completely explained by the

t-regressors (R2
θ = 95%). Even the big economic swings before 1979 are captured quite

well by the t-regressors. Moreover, nonzero time effects might be uncorrelated with

the included regressors such that ωu can still equal the true value. This illustrates the

stringency of our Wald diagnostic test; it is sufficient but not necessary for ωu = ω.

In contrast to the diagnostic test, the Wald sensitivity test does not reject. That

is, there is no evidence that the t-variables driving θut are correlated with the two it-

regressors. The latter are similar to the included t-regressors, as both concern GDP and

REER. This suggests that leaving out θut does not cause omitted variable bias in the

estimated ωu as well. This corroborates our qualifications regarding the diagnostic test

rejection above. Furthermore, all estimates are quite similar to those in the baseline

sample, where we do not reject θut = 0. Hence, despite the rejection of the diagnostic

test, we tentatively conclude that also in the enlarged sample the estimated ωu reflect

the true value acceptably well.
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